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A driven evolution of a magnetic field has three aspects: field line topology, magnetic energy,
and magnetic helicity. An ideal evolution with minimal energy input can produce magnetic field
line chaos, which makes the preservation of field-line topology exponentially sensitive to non-ideal
e↵ects on an evolution timescale, but has no direct e↵ect on energy or helicity dissipation. Resistive
dissipation of the power input requires highly localized current densities j ⇡ vB/⌘, where v is the
velocity given by the evolution drive and ⌘ is the plasma resistivity. Dissipation of the magnetic
helicity input cannot be balanced when the magnetic Reynolds number is large compared to unity.
Current densities j ⇡ vB/⌘ are consistent with those required to produce the solar corona with the
observed height of the transition region by the Dreicer electron runaway e↵ect.

I. INTRODUCTION

According to Wikipedia: Magnetic reconnection

is a physical process occurring in highly conducting

plasmas in which the magnetic topology is rearranged

and magnetic energy is converted to kinetic energy,

thermal energy, and particle acceleration.

Magnetic topology rearrangement and magnetic
energy conversion are two distinct physical pro-
cesses, but each process has been used to define mag-
netic reconnection. The classical definition was in a
1956 paper of Parker and Krook [1]: severing and

reconnection of lines of force. In the space sciences,
the emphasis has focused on energy conversion. In
2020, Hesse and Cassak stated [2]: Magnetic recon-

nection converts, often explosively, stored magnetic

energy to particle energy in space and in the labora-

tory.

By definition, a highly conducting plasma has a
magnetic Reynolds number,

Rm ⌘ µ0va

⌘
, (1)

that is far larger than unity; v is a typical plasma
flow speed, a a typical spatial scale, and ⌘/µ0 is the
resistive di↵usion coe�cient. In problems of interest
Rm can be between 104 and 1014.

A practical understanding of magnetic field evo-
lution when the magnetic Reynolds number, Rm, is
large requires disentangling three distinct physical
processes: magnetic topology rearrangement, mag-
netic energy conversion , and magnetic helicity evo-
lution. This disentanglement depends on whether
the magnetic field depends non-trivially on all three
spatial coordinates or only two.

The classic paradigm for magnetic reconnection
was that of Schindler, Hesse, and Birn [3]. They
noted that

@ ~B

@t
= ~r⇥

�
~v ⇥ ~B + ⌘~j

�
(2)

implies that resistive breaking of the magnetic field
lines directly competes with an evolution velocity ~v
when the current density lies in a narrow sheet of
cross-sectional area a

2
/Rm with a magnitude that

approximates

jshb ⌘
vB

⌘
. (3)

The classic reconnection paradigm of Schindler et
al was developed for reconnection in which the mag-
netic field has a non-trivial dependence on only two
spatial coordinates. A di↵erent paradigm for the
breaking of magnetic field line connections has been
introduced when the magnetic field has a non-trivial
dependence on all three spatial coordinates. The
three dimensional case is the one of practical inter-
est, but most of the literature is focused on the two
dimensions, which excludes magnetic field line chaos.

By definition, magnetic field lines are chaotic
when neighboring pairs of lines separate exponen-
tially with distance along the lines while remain-
ing within a bounded region of space. A basic re-
sult is that magnetic field lines can go from a sim-
ple smooth form to having large and broadly-spread
changes in their connections on a timescale that is
approximately a factor of ten longer than the ideal
evolution time when and only when the magnetic
field lines become chaotic.

The centrality of chaos to the rapid onset of
changes in magnetic topology when the plasma re-
sistivity and other non-ideal e↵ects are small is con-
troversial and could be shown to be false in two
ways: (1) Find an evolving highly chaotic mag-
netic field that nonetheless preserves well-defined
magnetic field line connections. (2) Find an evolv-
ing non-chaotic magnetic field that nonetheless goes
from being simple and smooth to large scale connec-
tion breaking on a timescale only an order of magni-
tude longer than the ideal evolution time, even when
Rm is many orders of magnitude larger than unity.
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The statement about the importance of chaos can
never be proven to be correct. Karl Popper, one the
twentieth century’s most influential philosophers of
science, famously stated [4] that a scientific state-
ment can never be proven to be correct but that it
must in principle be testable. The most reliable sci-
entific statements have been tested and never proven
false. Popper’s statements should be kept in mind
while considering the importance of chaos to recon-
nection.

Huang and Bhattacharjee [5] recently published
a paper Do chaotic field lines cause fast reconnec-

tion in coronal loops? When the evolution forces
the field lines to become chaotic, they found the on-
set of changes in field-line connections occurs on a
timescale set by the evolution essentially indepen-
dent of the resistivity. Nevertheless, they implied
the answer to their question was negative because
the energy transfer, which occurs on a timescale ap-
proximately a factor of two longer, requires a much
higher current density than that required for suf-
ficiently strong chaos for the breaking of magnetic
field line connections. Section VI discusses their pa-
per, which is skeptical about relevance of chaos while
confirming the central tenets of its role in recon-
nection. Most of the reconnection literature ignores
chaos rather than testing its importance.

The importance of chaos to the breaking of mag-
netic field line connections is intuitively obvious.
When an evolving magnetic field has a non-trivial
dependence on all three spatial coordinates, a tube
of contiguous magnetic field lines generally under-
goes an exponential distortion with distance along
the tube with the distortion increasing as the evolu-
tion progresses. This distortion is illustrated for the
model of Figure 1.a in Figure 1.b from the paper by
Huang and Bhattacharjee. Di↵erent tubes become
exponentially close at some points and are distant at
others. As the distortion increases, even the small-
est non-ideal e↵ects such as resistivity will intermix
field lines from di↵erent tubes. The importance of
this e↵ect to producing fast changes has been devel-
oped in a number of papers by Boozer, recent papers
include [6] and by Boozer and Elder [7]. The current
density required to obtain reconnection due to chaos
is j ⇡ (B/µ0L) lnRm and the required timescale is
approximately (a/v) lnRm. This current density lies
in multiple thin but broad ribbons along the mag-
netic field lines.

Magnetic field line chaos implies that the current
density jshb defined by Schindler, Hesse, and Birn
is not required for a rapid change in magnetic field
line connections; only j ⇡ (B/µ0L) lnRm is needed
for that. However, a current density comparable to
jshb is required for Ohmic dissipation to balance the
power input when the magnetic evolution is main-

FIG. 1: (a) A perfectly conducting cylinder of height L
and radius a encloses an ideal pressureless plasma. All of
the sides of the cylinder are fixed except the top, which
flows with a specified velocity ~vt. Initially, ~B = B0ẑ.
Each point ~xb on the bottom of the cylinder defines a
line of ~B that in an ideal evolution intercepts a specific
point on the top ~xt with @~xt(~x0, t)/@t = ~vt(~xt, t) and
~x0 ⌘ ~xt at t = 0. The case of primary interest is when
~vt is divergence free and chaotic. This means the 2 ⇥ 2
Jacobian matrix @~xt/@~x0 has a large singular value that
increases exponentially in time and a small singular value
that is the inverse of the large singular value. This figure
was originally published in Reference [7]. (b) Huang and
Bhattacharjee [5] used an equivalent square-cylindrical
model to project images on the top boundary of square
tubes of magnetic field lines on the bottom boundary. As
the distortions become ever larger, an arbitrarily small
resistive di↵usion ⌘/µ0 can intermix field lines from dif-
ferent tubes and thereby change their connections. This
figure is part of Figure 5 of their paper.

tained by driving a velocity v, as is the model of
Figure 1.a.

As discussed in Section V, when the drive for the
magnetic evolution is the flow in a sunspot that is a
footpoint for a coronal loop, jshb equals the current
required for electron runaway at the approximate
height of the transition region to the solar corona. In
other words, the observed solar corona can be taken
as evidence that current densities j ⇠ jshb actually
arise in the photosphere. The timescale required for
the current density to become this large is discussed
in Sections III and VIA3.

Papers by a number of authors emphasize that
chaotic magnetic-field-line trajectories fundamen-
tally change the paradigm of magnetic reconnec-
tion from that of Schindler et al. In 2005, Bor-
gogno, Grasso, Porcelli, Califano, Pegoraro, and Fa-
rina showed that the interaction of tearing modes
with di↵erent helicities in toroidal plasmas creates
magnetic field chaos and fundamentally changes the
definition of magnetic reconnection from the case in
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which the magnetic field depends on only two spatial
coordinates [8]. Chaos enters the theory of turbulent
magnetic reconnection, and this topic was reviewed
[9] by Lazarian, Eyink, Jafari, Kowal, Li, Xu, and
Vishniac in 2020. Eric Priest is associated with a
large body of work on three-dimensional structures
that tend to concentrate currents and thereby lead
to enhanced reconnection [10]. In particular, he is
known for his work on quasi-separatrix layers, which
are essentially regions of field line chaos. Reid, Par-
nell, Hood, and Browning [11], have simulated a
case in which the footpoint motions of magnetic field
lines do not directly make the lines chaotic but drive
large-scale instabilities that do. Huang and Bhat-
tacharjee [5] recognize that magnetic fields that de-
pend on all three spatial coordinates are generically
chaotic and that the chaos makes the maintenance
of field line connections fragile. Their simulations
agree with those of Boozer and Elder [7] in the build
up towards point at which a change in field-line con-
nections becomes inevitable. This is the only period
Boozer and Elder simulated.

The two defining processes for reconnection, a
topology change in the magnetic field lines or
an energy change in the magnetic field, are only
weakly coupled. Tokamak disruptions are spectacu-
lar changes in field-line topology. Most of the mag-
netic surfaces can be destroyed and the current pro-
file flattened on a timescale of milliseconds, when
the naively expected timescale would be minutes.
But, the change in the poloidal field energy [12]
is ⇠7.5% with the poloidal field energy only a few
percent of the magnetic field energy in the plasma.
It is the constraint of magnetic-helicity conserva-
tion that limits the release of energy. On the other
hand, ideal instabilities can convert magnetic energy
into plasma motion on an Alfvénic time scale with
no changes in the connections of the magnetic field
lines. Nevertheless, the non-linear evolution of ideal
instabilities may result in rapid changes in magnetic
field line connections no matter how small the resis-
tivity may be [11, 13, 14].

Magnetic field line chaos exponentially shortens
the time required before field lines can undergo topo-
logical changes but has little direct e↵ect on the rate
of energy dissipation and no e↵ect on the rate of he-
licity change. The robustness of magnetic helicity
conservation has been known since the 1984 work of
Berger [15]. The essential point is that the resistive
change in the helicity is given by

R
⌘~j · ~Bd

3
x, but

resistive dissipation of energy is given by
R
⌘j

2
d
3
x.

Concentrating the current in a thin channel en-
hances the energy dissipation but not the rate of
helicity change. As discussed by Boozer and Elder
when the timescale for helicity injection is shorter
than the resistive timescale defined by the spatially

averaged parallel current, flux-tube eruption must
eventually occur [7].

The role of helicity conservation in the space sci-
ences is most prominent in the theory of dynamos,
which is closely related to the theory of reconnection.
The conservation properties of the helicity have been
known since 1986 to invalidate the ↵-e↵ect dynamo
[16]. A more detailed proof was given in 1995 by
Bhattacharjee and Yuan [17]. Nevertheless, the ↵-
e↵ect dynamo is commonly studied in dynamo simu-
lations [18] by having a model that destroys helicity
at small scales even though this is not energetically
possible.

Although simulations are important for studying
the physics of reconnection, simulations are limited
to small magnetic Reynolds numbers Rm

<⇠ 106 due
to the higher resolution required as Rm increases.
The resolution in each of the three spatial spatial
directions as well as time must be increased as Rm.
The implications of chaos at Rm = 1014 requires
analytic understanding.

This paper has seven sections: Section II, Di↵er-

ences in paradigms, discusses the di↵erent views on
what are the important reconnection features and
questions. These di↵erences are most apparent be-
tween studies of toroidal magnetic-fusion plasmas
and studies of space and astrophysical plasmas.

Section III, Rate of current density increase, ex-
plains two ways to analytically study the rate at
which the current density increases: the increase in
the parallel current along an arbitrarily chosen mag-
netic field line and the increase in the current density
in a given flow.

Section IV, Evolution equations for magnetic field

connections, energy, and helicity, derives the three
basic evolution equations and discusses their conse-
quences.

Section V, Runaway electrons and the corona, ex-
plains why the existence of the solar corona provides
evidence that a parallel current density comparable
to jshb is driven from sunspots on the photosphere.

Section VI Simulations by Huang and Bhattachar-

jee, discusses the primary simulation [5] of the e↵ect
of a chaotic drive for magnetic field evolution.

Section VII summarizes the paper.

II. DIFFERENCES IN PARADIGMS

In 1962, Thomas Kuhn [19] in one of the most in-

fluential works of history and philosophy written in

the 20th century [20], discussed how di↵erences in
the important questions and in the important fea-
tures of a model arise whenever a new paradigm
is introduced. He also pointed out how di�cult it
is for a scientific community to accept a change in
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paradigm.

Di↵erent views about what are the important
questions in reconnection theory and what are the
important features of a model are most apparent
between studies of toroidal magnetic-fusion plasmas
and studies of space and astrophysical plasmas.

A. Di↵erences in questions

The questions that are considered important are
di↵erent between studies of magnetic-fusion and
space plasmas. (1) When the initial condition of
an evolving magnetic field is smooth, is the time re-
quired for reconnection to occur on a timescale com-
parable to the timescale set by an evolution? This
is a central issue in tokamak disruptions but the on-
set time for reconnection has not been a focus in
space and astrophysical plasmas. (2) How should
the speed of reconnection be defined? When rapid
energy transfer from the magnetic field to the plas-
mas is the definition of reconnection then the rate of
transfer provides a definition.

When a rapid breaking of the toroidal magnetic
surfaces occurs in a tokamak, the definition of the
speed of reconnection is subtle. Magnetic field lines
are defined at points in time. When the last in-
tact magnetic surface is broken, a magnetic field
line at that instant changes from being bound by
that surface to traversing the plasma and striking
the chamber walls. The relevant speed is not de-
fined by the instantaneous change in the trajectory
of the field line but by the speed of physical e↵ects
that are produced by the topological change. For
example, the topological change can allow relativis-
tic electrons trapped in the core of a tokamak to
strike the surrounding walls by following magnetic
field lines. The damage to the device is largely de-
termined by how highly localized in space and time
are the strikes of the relativistic electrons on the
walls.

In space and astrophysical studies, little study is
done of the physical e↵ects produced by the changes
in field line connections. Studies are focused on en-
ergy transfer from the fields to the plasma and on
acceleration of particles by the reconnection process.
Although the acceleration of electrons to relativistic
energies as a result of magnetic surface reconnection
is a major issue in tokamaks, the acceleration is not
a direct part of the reconnection process but rather
a result of the plasma cooling increasing the resistiv-
ity to the point that ⌘j̄, with j̄ a spatially-averaged
current density, gives an electric field above that re-
quired for electron runaway.

B. Di↵erences in problems

The periodicity of toroidal fusion plasmas gives a
clear definition of the breaking of magnetic connec-
tions. Breaking connections means breaking mag-
netic surfaces, as in a tokamak disruption. In space
plasmas the boundary conditions are often too in-
determinate to rigorously define magnetic field line
topology or what is meant by the breaking of field-
line connections. Nevertheless, answers to physical
questions within the region of interest may depend
on what happens outside that region [21].

When the breaking of field-line connections is not
defined, the e↵ects and speed of braking connections
are treated as unimportant.

In toroidal fusion plasmas, the e↵ects of mag-
netic surface breaking are of primary importance—
the loss of plasma confinement and the flattening of
j||/B over each regions covered by a single field line.
Changes in field line topology occurs at instants in
time. Nevertheless, the e↵ects of topological changes
occur over finite time intervals, the time it takes for
particles or energy to be transported along mag-
netic field lines throughout a chaotic region. For
j||/B flattening, the characteristic time is the time
for shear Alfvén waves to cover the chaotic region
by propagating along the magnetic field lines.

When topology and changes in field line connec-
tions are ill-defined, energy transfers between the
field and the plasma seem most important, and it
is natural to define magnetic reconnection by the
energy transfer [2]. Energy transfer can be defined
even in models in which changes in magnetic topol-
ogy are not defined. A non-zero ⌘ is unnecessary for
energy release from the magnetic field–ideal mag-
netic kinks are a well known example. Neverthe-
less, the energy release from the magnetic field is
generally greater when the field-line connections are
freely broken. The direct energy release from the
magnetic field is of little interest in the fast recon-
nections called tokamak disruptions for as mentioned
earlier less than a part in a thousand of the energy
is typically released [12].

III. RATE OF CURRENT DENSITY
INCREASE

The increase in the current density along an arbi-
trarily chosen magnetic field line and the increase in
the current density in a given flow are the two ways
to estimate the rate the plasma current increases.
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A. Current density along an arbitrary line of ~B

1. The near-line expansion

When the ideal evolution term, ~v ⇥ ~B, is large
compared to the resistive term, the evolution of the
parallel current j|| along an arbitrarily chosen mag-
netic field line ~x0(`, t) is given by [22, 23]

@⌦B0

@`
=
@

⇣
K0 + 2⌧0 +

4k2
q

@'q/@s

⌘
B0

@t
. (4)

K(`, t) ⌘ µ0j||/B0, ⌦(`, t) = b̂0 · ~r⇥~v, and ⌧0(`, t) is
the torsion of the curve. The quantity k

2
q/(@'q/@`)

is defined by the quadrupole contribution to the
Hamiltonian for the adjacent magnetic field lines and
should only be retained when the adjacent field lines
are not chaotic.

A more intuitive and more easily interpreted form
of Equation (4) is

@⌦B0

@`
=
@ (K0 + 2⌫)B0

@t
, (5)

where ⌫(`, t) is the stellarator-like rotational trans-
form per unit length of field lines produced by cur-
rents at a distance from the chosen line. The term
on the right-hand side of Equation (5) comes from
the fact that when the externally-produced rota-
tional transform ⌫ per unit length has a positive
time derivative, then K must decrease to keep the
total transform per unit length fixed. The fac-
tor of two comes from dependence of the current-
produced transform at a radius ⇢0 being propor-
tional to (

R
K⇢d⇢)/⇢20 = K/2 as ⇢0 ! 0. The left-

hand side comes from the fact that when the field
lines are undergoing a twist per unit time, which is
what ⌦ is, then a current must increase to produce a
total rotational transform per unit length that gives
@⌦/@`.

The derivation of Equation (4) uses the position
vector is ~x(⇢,↵, `) = ⇢ cos↵̂0 + ⇢ sin↵⌧̂0 + ~x0(`, t),
where ⇢ is the distance from the curve; ̂0 and
⌧̂0 are the curvature and torsion unit vectors of
the field line ~x0(`, t). The trajectories of the ad-
jacent lines are given by a H̃ =  ̃h(↵, s), where
h = k!(s, t) + kq(s, t) cos

�
2↵ � 'q(s, t)

�
with k! ⌘

K0/2+⌧0. The magnitude of the quadrupole compo-
nent of the magnetic field is given by kq ̃, the only
⇢
2 order Fourier component in the Hamiltonian. The

magnetic flux is  ̃ ⌘ ⇡B0⇢
2.

2. Analogous expression of Huang and Bhattacharjee

Equation (15) of Huang and Bhattacharjee [5] ap-
pears to be analogous to Equation (5). Their ana-

logue to 2@⌫(`, t)/@t is T , where

T ⌘ @x~u · @y ~B? � @y~u · @x ~B?. (6)

Their paper emphasizes the importance of T to the
di↵erences between their results and those of Boozer
and Elder [7].

Near a given line the divergence-free magnetic
field line velocity and the ideal perturbation to the
magnetic field � ~B can be written in terms of the field
line displacement ~� with ~r · ~� = 0;

~u =
@~�

@t
; (7)

� ~B = ~r⇥ (~�⇥B0ẑ) (8)

= B0
@~�

@z
. (9)

The displacement is the sum of two parts: a part
with a curl, ~�c, and a quadrupole part, �q, that
does not. Each has an associated velocity and per-
turbed magnetic field. The displacement �c also
has an associated vorticity ⌦ and a parallel current
density, or K, but �q does not.

~�c = �c1(z, t)xŷ ��c2(z, t)yx̂; (10)

⌦ ⌘ ẑ · ~r⇥ ~uc (11)

=
@(�c1 +�c2)

@t
; (12)

� ~Bc

B0
=

@�c1

@z
xŷ � @�c2

@z
yx̂; (13)

K ⌘ ẑ · ~r⇥ � ~Bc

B0
(14)

=
@(�c1 +�c2)

@z
; (15)

~�q = �q(t)(xx̂� yŷ) cos(kzz)

+�q(t)(yx̂+ xŷ) sin(kzz); (16)

� ~Bq = kzB0

n
(yx̂+ xŷ) cos(kzz)

�(xx̂� yŷ) sin(kzz)
o
. (17)

The magnetic scalar potential that gives the dipo-
lar field is proportional to ⇢

2 cos(2✓ � kzz), where
⇢ is the distance from the line, and ✓ is the angle
around the line. Only one Fourier component in z is
retained, but an arbitrary number of kz’s could be.
The second harmonic is the only curl-free term that
can contribute in ⇢2 order.

The there are four contributions to T of Equation
(6). T = Tcc+Tcq+Tqc+Tqq with first su�x denoting

~uc or ~uq and the second the corresponding � ~B.

Tcc = 0; (18)
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Tcq = kzB0
@(�c1 ��c2)

@t
�q sin(kzz); (19)

Tcq = B0
@�q

@t

@(�c1 ��c2)

@z
cos(kzz); (20)

Tqq = kzB0
d�2

q

dt
. (21)

Letting �c1 ��c2 = �c(t) cos(kzz) +�s(t) sin(kzz)
gives

T = kzB0

 
�2

q +�s�q/2

dt

!

+kzB0

n✓
d�c

dt
�q ��c

d�q

dt

◆
sin(2kzz)

2

+

✓
�s

d�q

dt
� d�s

dt
�q

◆
cos(2kzz)

2

o
. (22)

When the various �’s increase together, so
d ln�c/dt = d ln�s/dt = d ln�q/dt,

T = kzB0

 
�2

q +�s�q/2

dt

!
and (23)

⌫hb = kz
�2

q +�s�q/2

2a2
(24)

is the Huang and Bhattacharjee analogue of ⌫ in
Equation (5) using the coe�cients that they used to
make their equations dimensionless.

3. Force-balance and plasma flow

Once magnetic field lines have become chaotic, so
connections are easily broken, the power input goes
into plasma motion until it can be dissipated by re-
sistivity or viscosity.

The divergence-free nature of the current~j implies
K and the Lorentz force ~fL ⌘ ~j ⇥ ~B are related by

@K

@`
= b̂ · ~r⇥ µ0

~fL

B2
, where (25)

~fL = ⇢

✓
@~v

@t
+ ~v · ~r~v � ⌫ ~r⇥ ~⌦

◆
. (26)

When the linear inertial term dominates
V

2
A@K/@` = @⌦/@t and K relaxes to being

uniform along magnetic field lines at the Alfvén
speed, VA.

As discussed in Section VI, the behavior of @K/@t

depends on the relative magnitudes of @~v/@t, ~v · ~r~v,
and ⌫ ~r⇥~⌦, which could be explored by simulations.

B. Current increase in a given flow

When the magnetic field lines have a known ve-
locity, ~u?(~x, t), the Cauchy solution for the ideal
evolution of the magnetic field is

~B
�
~x(~x0, t)

�
=

J
$

L

JL
· ~B(~x0), (27)

where J
$

L is the Jacobian matrix of the Lagrangian

coordinates of ~u? and JL is the determinant of J
$

L.
The history of this solution was reviewed by Stern
[24] in 1966.

Equation (27) has profound implications about
the di↵erences in between two and three dimensional
evolution and the speed with which the current den-
sity can increase.

The Cauchy solution is a purely mathematical
statement about Faraday’s law, @ ~B/@t = �~r ⇥ ~E,
and the representation of the vector ~E in terms of ~B.
Widespread confusion exists within the reconnection
community between this mathematical representa-
tion of ~E and Ohm’s law, which is the constitutive
expression for the electric field. This distinction is
explained in Section III B 1.

Section III B 2 defines Lagrangian coordinates,
~x(~x0, t), and explains the Singular Value Decompo-

sition of the Jacobian matrix J
$

L ⌘ @~x/@~x0. The
implications of the Cauchy solution are discussed in
Section III B 3.

1. Electric field expression versus representation

Two concepts that are commonly confused are the
general representation of an electric field

~E + ~u⇥ ~B = �~r�+ E ~r`, (28)

where E is constant along a magnetic field line [25],
and an Ohm’s law expression for the electric field,
such as

~E + ~v ⇥ ~B = ⌘~j �
~rpe

en
, (29)

where the term involving the gradient of the elec-
tron pressure divided by its density is called the Hall
term.

Equation (28) is a purely mathematical state-
ment about representation of one three-space vector,
~E(~x, t), in terms of another, ~B(~x, t). Its physical im-
portance is that it clarifies the properties of evolving
magnetic fields since that evolution is given exactly
by Faraday’s law, @ ~B/@t = �~r⇥ ~E. In particular,
the magnetic evolution is called ideal when E = 0;
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then ~u? is the velocity of the magnetic field lines, as
shown by Newcomb [26] in 1958. The component of
~u along the field lines is arbitrarily defined, only the
perpendicular components ~u? are physically mean-
ingful. Magnetic field lines that are evolving ide-
ally become chaotic when the streamlines of ~u? are
chaotic. The topology of the magnetic field lines can-
not change unless E is non-zero but becomes expo-
nentially sensitive to a non-zero E when the stream-
lines of ~u? are chaotic.

Although the validity of Equation (28) appears to
depend on ~B 6= 0, it is also valid in the presence of
point nulls of ~B. This is seen by placing an infinites-
imal sphere around each point null as was done by
Elder and Boozer [27] in 2021. The potential � at
the null must be chosen to ensure

H
~j ·d~a = 0 at each

null—charge cannot accumulate at a null. It should
be noted that only point nulls are generic. Line nulls
can be broken into well separated point nulls by a
magnetic perturbation of infinitesimal strength.

On the other hand, Equation (29) of Ohm’s law is
a statement of physics, a constitutive relation, that
gives one physical quantity, ~E(~x, t), in terms of oth-
ers such as the mass flow velocity ~v(~x, t), and current
density ~j(~x, t), of a plasma. The vector components
of the right-hand side of Ohm’s law that are perpen-
dicular to ~B give the velocity ~v of the plasma relative
to the velocity ~u, which when, but only when, the
magnetic evolution is ideal is the velocity of the mag-
netic field lines. When the Hall term is ignored and
|~j?| << |j||, the velocity ~u can be identified with
~v. To simplify discussions, ~u and ~v are frequently
identified.

2. Lagrangian coordinates

Lagrangian coordinates ~x0 are defined so that the
position vector in ordinary Cartesian coordinates is
~x(~x0, t), where
✓
@~x

@t

◆

L

⌘ ~u?(~x, t) with ~x(~x0, t = 0) = ~x0. (30)

The subscript “L” implies the Lagrangian coordi-
nates ~x0 are held fixed.

The three-by-three Jacobian matrix of Lagrangian
coordinates can be decomposed as

@~x

@~x0
⌘

0

B@

@x
@x0

@x
@y0

@x
@z0

@y
@x0

@y
@y0

@y
@z0

@z
@x0

@z
@y0

@z
@z0

1

CA

= U
$
·

0

@
⇤u 0 0
0 ⇤m 0
0 0 ⇤s

1

A ·
$
V

†
. (31)

where U
$

and
$
V are unitary matrices, U

$
·U
$† = 1

$
. The

three real coe�cients ⇤u � ⇤m � ⇤s � 0 are the
singular values of the Singular Value Decomposition
(SVD). The Jacobian matrix can also be written as

@~x

@~x0
= Û⇤uû+ M̂⇤mm̂+ Ŝ⇤sŝ, (32)

where Û , M̂ , and Ŝ are orthogonal unit vectors, Û =

M̂ ⇥ Ŝ, of the unitary matrix U
$
, which means they

define directions in the ordinary space of Cartesian
coordinates, ~x. The unit vectors û, m̂, and ŝ are

determined by the unitary matrix
$
V , which means

that they define directions in the space of Lagrangian
coordinates, ~x0.

The Jacobian of Lagrangian coordinates, which is
the determinant of the Jacobian matrix, is

JL = ⇤u⇤m⇤s. (33)

The time derivative
�
@ ln(JL)/@t

�
L

= ~r · ~u?. For
the model of Figure 1.a, the Jacobian changes little
from unity.

The properties of evolving magnetic fields and cur-
rents using Lagrangian coordinates were discussed
by Tang and Boozer [28] in 2000 and by Thi↵eault
and Boozer [29] in 2003.

3. Implications of the Cauchy ~B(~x, t)

Using the Singular Value Decomposition of La-
grangian coordinates, Equation (27) for the Cauchy
solution implies [6]

B
2 =

 
û
† · ~B0

⇤m⇤s

!2

+

 
m̂

† · ~B0

⇤u⇤s

!2

+

 
ŝ
† · ~B0

⇤u⇤m

!2

.(34)

The mathematical definition of a chaotic ~u? is
that the largest singular value ⇤u > exp(t/⌧L) for
some ⌧L > 0 for any time t greater than a su�-
ciently large value. The smallest ⌧L that satisfies this
inequality gives the exponentiation timescale. The
product of the three singular values ⇤u⇤m⇤s ⇡ 1.
When ⇤u increases exponentially, ⇤s decreases ex-
ponentially, and ⇤m has at most an algebraic depen-
dence on time. The exponentiation time scale ⌧L is
usually comparable to the evolution time scale.

The term in B
2 proportional to (û† · ~B0)2 goes

to infinity exponentially in time. The term propor-
tional to (ŝ† · ~B0)2 goes to zero exponentially. A
bounded magnetic field strength is only possible for
a time long compared to ⌧L when the magnetic field
points in the M̂ direction,

~B(~x, t) ! m̂
† · ~B0

⇤u⇤s
M̂. (35)
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The unit vector M̂ is also the unit vector along the
magnetic field b̂. When the magnetic field is in the
M̂ direction the current density ~j lies in ribbons
along the magnetic field lines which become expo-
nentially wider and exponentially thinner in time
with the magnitude of the current density increas-
ing only algebraically [6]. The results of Boozer and
Elder [7] in 2021 exhibit these properties.

Any smooth flow must naturally be consistent
with the magnetic field lying in the M̂ direction.
Otherwise the magnetic field pressure B2

/2µ0 would
increase exponentially in time.

The number of spatial dimensions is critical in re-
connection theory because the number of singular
values of Jacobian matrix equals the number of co-
ordinates. In two dimensions, a chaotic ~u? implies
the magnetic field strength must increase exponen-
tially in time, but not in three dimensions.

When ~B has a small component in the Û direction,
that component and the associated current density
are amplified exponentially in time until that com-
ponent becomes comparable to ~B. The implication
is that localized flows, which are seen in the Huang
and Bhattacharjee simulations [5], can produce thin
current sheets on a fast time scale as discussed in
Section VIA3.

Although force-limits push ~B to be in the direc-
tion M̂ , which allows only an algebraic increase in
current density with time, the small deviations in ~B

that are associated with di↵erent current profiles can
be in the exponentiating Û direction, which has an
exponentially increasing current density. This expo-
nentiation can only hold while the current channel
narrows while the spatially-averaged current density
remains essentially constant.

IV. EVOLUTION EQUATIONS FOR
MAGNETIC FIELD CONNECTIONS,

ENERGY, AND HELICITY

A. Conservation of magnetic field line topology

Both the conservation and the evolution of mag-
netic topology is rigorously defined by the magnetic
field line Hamiltonian and its canonical coordinates.
Applying a method, which is well known in toroidal
plasmas [30], to the model of Figure 1.a, the mag-
netic field is written using ( , ✓, z) as coordinates,
which map ~x( , ✓, z, t) to ordinary Cartesian coor-
dinates as

~x = x( , ✓, z, t)x̂+ y( , ✓, z, t)x̂+ zẑ; (36)

~B =
~r ⇥ ~r✓

2⇡
+

ẑ ⇥ ~r p

L
. (37)

where  is the longitudinal magnetic flux and
 p(( , ✓, z, t) is the poloidal flux and the field line
Hamiltonian,

d 

@z
= � 1

L

@ p

@✓
and

d✓

@z
=

1

L

@ p

@ 
. (38)

The poloidal flux can be assumed to initially be zero,
but it evolves according to the equation

~E + ~u⇥ ~B =
@ p( , ✓, z, t)

@t

ẑ

L
� ~r�, where (39)

~u =
@~x( , ✓, z, t)

@t
with (40)

~E + ~u⇥ ~B = �~r�+ E( , ✓, t)ẑ, so (41)

@ p

@t
= LE . (42)

Hamilton’s equations for the magnetic field
lines, Equation (38) change when and only when
 p( , ✓, z, t) changes. Consequently, the evolution
of  p gives the topological evolution.

The equation ~x( , ✓, z, t) maps the canonical co-
ordinates of the magnetic field line Hamiltonian into
Cartesian coordinates. When @ p/@t = 0, the ve-
locity ~u ⌘ @~x/@t gives the velocity of the magnetic
field lines through space.

B. Energy evolution

Power is removed from the magnetic field at the
rate ~j · ~E. When ~E is given by the Ohm’s law of
Equation (29), then ignoring the Hall term

~j · ~E = ~v · (~j ⇥ ~B) + ⌘j
2
. (43)

The term ~v · (~j ⇥ ~B) gives the transfer of energy
to plasma, which is not in itself dissipative but can
be dissipated by viscosity, Equation (26). The term
⌘j

2 is the direct Ohmic dissipation of the magnetic
energy.

The power that it takes to maintain the
divergence-free flow in the top surface,

~vt = ẑ ⇥ ~rh (44)

is the integral over the volume of the top surface,

P = �
Z
~vt · (~j ⇥ ~B)d3x (45)

=

Z
Bz
~j · ~rhd

3
x (46)

= B0

I
h~j · d~a = �B0

µ0

Z
h(~r⇥ ~B) · ẑdat

= �B0

µ0

Z
~r⇥ (hẑ) · ~Bdat

=
B0

µ0

Z
~vt · ~Btdat, (47)
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since ~vt · ~B = ~vt · ~Bt with ~Bt the tangental magnetic
field to the top surface.

The important equations for the power input are
Equation (46), which gives the power using the
stream function h and the plasma current intercept-
ing the top surface in Figure 1, and Equation (47),
which gives the power using the velocity ~vt of the
top surface and the magnetic field tangent to that
surface on the plasma side.

C. Helicity evolution

The equation for magnetic helicity evolution was
derived in Section VI of Reference [7] and is only
summarized here. Letting g(~x, t) be the gauge of
the vector potential,

K ⌘
Z

~A · ~Bd
3
x (48)

=

I
g ~B · d~a�

2
R
 pd d✓dz

2⇡L
(49)

dK
dt

= K̇B � 2

Z
E d d✓dz

2⇡
, where (50)

K̇B = �2B2
0

Z
hdat so (51)

dK
dt

= �2B2
0

Z
hdat � 2

Z
E ẑ · ~Bd

3
x (52)

since the Jacobian of ( , ✓, z) coordinates is J =
1/ẑ · (~r ⇥ ~r✓) = 1/(2⇡ẑ · ~B).

There are two important points. (1) Helicity is
dissipated by the volume integral of EBz, so neither
magnetic field line chaos nor the current density be-
ing concentrated into thin ribbons enhances its dis-
sipation. (2) Helicity input occurs when

R
hdat =R

hrcdrcd✓c is non-zero, where (rc, ✓c, z) are cylindri-
cal coordinates. The implication is that only the ✓c
average of the stream function h contributes, which
gives a purely circular flow pattern, v̄✓c(rc, t)✓̂c. A
circular flow can drive ideal kink instabilities, Sec-
tion IV of Reference [7], and cause the eruption of
coronal loops. There is no alternative to an erup-
tion when helicity is systematically accumulating in
a loop.

V. RUNAWAY ELECTRONS AND THE
CORONA

The large current density jshb that is required to
Ohmically dissipate the power input can exceed the
Dreicer current density jd. When j > jd, small-
angle Coulomb collisions cannot maintain a near
Maxwellian distribution, and electrons runaway to

a high energy. The calculations of Kulsrud et al [31]
imply the rate of electron runaway reaches a signifi-
cant value at the current density jd = 2⇥ 10�2

enve.
As pointed out by Boozer in [32] and discussed in

[30, 33], when the Dreicer current is exceeded, elec-
trons must runaway to whatever energy is required
to carry the current. For the corona, this means to
a su�ciently high energy that the electron density n

does not become too small due to the gravitational
acceleration of the sun g. When the temperature T

is constant, dn/dr = �n/h, where the scale height
h ⌘ T/Mg. When the ionization is high, M = mi,
the proton mass, and h ⇡ 350T km/eV. A coro-
nal temperature of 100 eV is consistent with a scale
height of 35,000 km.

Below the transition region to the corona, Song
[34] found the electron temperature is almost con-
stant, ⇡ 0.5 eV, which implies an electron thermal
speed ve ⇡ 3 ⇥ 105 m/s and the Spitzer resistivity
⌘ ⇡ 4⇥10�3 Ohm-meter. The electron density drops
rapidly with altitude above the photosphere and
reaches n ⇡ 3⇥1016/m3, at the transition. The Dre-
icer current at the transition is then jd ⇡ 105 A/m2.
The current density jshb ⌘ vB/⌘ ⇡ 250vB, which
equals jd when vB ⇡ 400 T·m/s. Song found the
magnetic field is highly localized in flux tubes on
the photosphere, but those tubes have large diame-
ters at the transition region.

The magnetic field and velocity that should be
used to estimate of jshb are uncertain and would be
better estimated by someone more familiar with so-
lar physics. For coronal loops driven by sunspots,
two papers are of particular importance. Okamoto
and Sakurai [35] have observed fields above 0.6 T
at sunspots, and Sobotka and Puschmann [36] have
observed horizontal flows of 4 km/s. The prod-
uct of these numbers gives vB = 2400 T·m/s ap-
proximately six times higher than that required for
jd = jshb at the transition. More typical velocities
and fields could produce an exact balance.

As noted in [30], any star that has evolving mag-
netic field structures on the scale of tens of thou-
sands of kilometers must have a corona, otherwise
the induced currents would run out of current car-
riers, but whether this actually explains the solar
corona requires careful study.

VI. SIMULATIONS BY HUANG AND
BHATTACHARJEE

The Huang and Bhattacharjee [5] publication Do

chaotic field lines cause fast reconnection in coronal

loops? is of su�cient importance to be a Featured
article by the Physics of Fluids and is the most com-
plete numerical study of the importance of chaos to
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reconnection in the solar corona. They carried out
the simulations in a model equivalent to Figure 1.a,
recognized that magnetic fields that depend on all
three spatial coordinates are generically chaotic and
noted that: Boozer points out the fragility of the

ideal MHD frozen-in constraint in the presence of

chaotic field lines. This important aspect warrants a

broader attention and further investigation.

Nevertheless, the Huang-Bhattacharjee paper is
skeptical about the importance of chaos to recon-
nection. They dismiss the importance of changes
in field-line connections that arise from the expo-
nential enhancement of resistive di↵usion by chaos:
Boozer’s definition of reconnection relies entirely on

the connections between fluid elements, and he at-

tributes any changes in the connections to reconnec-

tion. This definition, while precise, is overly gen-

eral, and blurs the distinction between reconnection

and di↵usion. What they view as important are the
signatures of reconnection, intense current densities
j ⇡ jshb, which are required to dissipate the input
power. The skepticism of Huang and Bhattacharjee
comes from di↵erent views about what are the im-
portant questions in reconnection theory and what
are the important features of a model. These di↵er-
ences were discussed in Section II.

Even in their abstract [5], Huang and Bhattachar-
jee focus criticism on a paper by Boozer and El-
der [7]. The Boozer-Elder paper used the model
of Figure 1.a for an in-principle proof that bound-
ary conditions that force the magnetic field lines to
be chaotic can make a change in the connections of
magnetic field lines inevitable on a fast timescale.
This timescale is set by the boundary conditions re-
gardless of how small the non-ideal plasma e↵ects
may be.

As discussed in Boozer’s 2021 paper [6], as field-
line connection changes proceed, static force balance
is lost and the evolution rate is determined by the

speed of Alfvén waves. Since the plasma current den-
sity required for consistency with the chaos is smaller
by a factor ln(Rm)/Rm than that required for dissi-
pating the input power, the input power must cause
plasma velocity ṽ and magnetic field B̃ perturba-
tions of increasing amplitude until dissipation bal-
ances the input power.

As expected, rapid plasma flows are seen in the
Huang-Bhattacharjee simulations after changes in
field line connections become inevitable, Section
VIA2, but they claim disagreement with the equa-
tion used by Boozer and Elder, @K(`, t)/@t =
@⌦(`, t)/@`, for the parallel current density. This
simplified equation assumes currents distant from
the magnetic field line being considered make a neg-
ligible contribution to ⌫(`, t), the rotational trans-
form per unit length, of Equation (5). The validity

of this approximation requires no kinks arise, and
Boozer and Elder chose a chaotic flow ~vt that has
a special form that does not drive kink instabilities.
Indeed, Huang and Bhattacharjee saw no evidence
of instabilities during their ideal, ⌘ = 0 simulations.

With the approximation @K/@t = @⌦/@`, Boozer
and Elder showed that before changes in field line
connections take place that a simplified version is ad-
equate with @⌦/@` = ⌦t/L, where ⌦t is the vorticity
in the top surface. The resulting model is extremely
simple but shows how the current density naturally
concentrates in exponentially thin but broad ribbons
with the maximum current density only increasing
linearly in time.

The Boozer and Elder approximation can only
be valid up to the point at which magnetic recon-
nection is inevitable. Afterwards, rapid flows make
@⌦/@` >> ⌦t/L. Section VIA3 shows the equa-
tion @K/@t = @⌦/@` gives the time required for the
current density to reach the large values seen in the
Huang-Bhattacharjee simulations that is extremely
short, ⇠ a/VA, when parameters are used that are
characteristic of the period after fast reconnection
has begun.

The primary criticism that Huang and Bhat-
tacharjee make of the Boozer-Elder calculation is the
omission of the term T , Equation (6). As discussed
in Section IIIA 2, this term appears to be analogous
to @⌫/@t of Equation (5), and would apparently add
a term to K that equals �kz(�2

q + �s�q/2)(2a2),
where kz is the wavenumber of the variation of the
field-line displacements, the�’s, along the line. This
term can be significant before strong field line break-
ing occurs. Nevertheless, as the Boozer-Elder calcu-
lation proves, it is not necessary for the breaking
of connections to become inevitable on a fast time
scale, which was the motivation for their calcula-
tion. Ignoring this term, they found exponentially
increasing distortions of the tubes of magnetic field
lines and exponentially thinning and broadening rib-
bons of current.

Since numerical errors are multiplied by an expo-
nential, it is di�cult to accurately follow a force-free
ideal evolution, which requires the field ~B(~x, t) pre-
serve the footpoint locations while (~r ⇥ ~B)? = 0,
as the number of exponentiations in separation be-
tween neighboring pairs of field lines becomes arbi-
trarily large.

A. Interpretation of the simulations

Basic physics gives an interpretation of the Huang
and Bhattacharjee simulations. The estimates made
in this section could obviously be made far more
accurately by the simulation authors.
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1. Dimensional analysis

Simple scalings can be made by dimensional anal-
ysis of the fundamental equations. Equation (46)
implies the input power Pin ⇡ B0vtaj̄At, where
At = a

2 is the area of the top surface, the stream
function h ⇡ avt, and j̄ is a spatially averaged
current density. The resistively dissipated power
P⌘ = ⌘j

2
c fAAtL, where fA is the fraction of the area

occupied by the concentrated current density jc, so
jc = j̄/fa. For a balance, P⌘ = Pin,

jc ⇡ vtB0

⌘

a

L
(53)

= Rm
B0

µ0L
, and (54)

B0

µ0L
=

�B

µ0a
= j̄, so (55)

jc ⇡ Rmj̄ and (56)

fA ⇡ 1

Rm
. (57)

The perturbed magnetic field consists of two parts.
A part �B ⇡ B0a/L is required for field lines to con-
nect appropriately at the top and bottom surfaces
of the cylinder. Another part is a fluctuating field
B̃ ⇡ (ṽ/VA)B0 due to Alfvén waves talking up the
released energy. The energy in Alfvén waves must
increase until the vorticity ⌦ = b̂ · ~r⇥~̃v becomes suf-
ficiently strong to increase the concentrated current
to the level required for power balance.

2. Scaling coe�cients

More precise scalings can be obtained by modify-
ing the dimensional analysis by multiplicative coe�-
cients to obtain agreement with Line E in Table I of
their paper. All the coe�cients are small. It would
be interesting to study why.

The non-fluctuating part of the perturbed part
of the magnetic field �B needs to be of order
(a/L)B0 = 0.1B0 to connect the footpoints at
the top and bottom of the cylinder. EM =R
(�B2

/2)d3x = 4.37⇥ 10�3
B0a

2
L implies

�B = 0.296B0. (58)

The oscillatory part of the perturbed magnetic
field B̃ = B0ṽ/VA also has the magnitude B̃ ⇡ 0.1B0

but only in the small fraction of the cross-sectional
area

fA = 1.63⇥ 10�3 (59)

in which the current is concentrated. The factor
ṽ/VA in the narrow regions of current concentration

can be obtained from their Figure 6, as ṽ ⇡ 0.1VA

and from the kinetic energy EK = 8.97 ⇥ 10�6 di-
vided by the fraction of the cross-sectional area occu-
pied by these currents, fA, so ṽ

2
/2V 2

A = 5.5⇥ 10�3,
which gives

ṽ

VA
= 0.105. (60)

The power input over a run of length 103a/Va is

Wp = (B0/µ0)

Z
~B? · ~vtdadt (61)

= cp0.296B0 ⇥ 10�2
Va ⇥ a

2 ⇥ 103a/VA (62)

= 2.96cp(B
2
0/µ0)a

3 (63)

= 1.79⇥ 10�2(B2
0/µ0)a

3
, from Table I;(64)

cp = 6.05⇥ 10�3
. (65)

using the entry for the S = 106 case from Table I.
The density of the concentrated current is

jc = cj
�B

µ0afA
(66)

= 181.6cj
B0

µ0a
(67)

= 9.69
B0

µ0a
from Table I; (68)

cj = 5.33⇥ 10�2
. (69)

The energy dissipated by resistively is

W⌘ =

Z
⌘j

2
d
3
xdt (70)

= c⌘(⌘j
2
c fAa

2
L)

✓
103

a

VA

◆
, so (71)

= c⌘⌘

✓
cj

B0

µ0a

◆2

(fAa
2
L)

✓
103

a

VA

◆
(72)

= c⌘⌘(0.1B0)(fAaµ0)
2(fAL)(10

2
a/VA).(73)

=
c⌘c

2
jfA

S

L

a

B
2
0

µ0
a
3 (74)

= 0.463c⌘
B

2
0

µ0
a
3 (75)

= 1.13⇥ 10�2B
2
0

µ0
a
3 from Table I; (76)

c⌘ = 24.4⇥ 10�3
, (77)

which is approximately four times larger than cp.

3. Time required to reach jc

The time required to reach a current density jc

is given by @K/@t = @⌦/@`, where K ⌘ µ0jc/B0.
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When viscous e↵ects are small, kinetic terms must
balance the ~j ⇥ ~B force. Once the velocity fluctu-
ations are large, it is natural to expect |@~v/@t| ⇡
|~v · ~r~v| ⇡ ṽ

2
/�tan where �tan is the scale of ~v vari-

ation along itself. Figure 6 of Huang and Bhat-
tacharjee’s paper [5] implies the spatial scale over
which ṽ changes along itself is much greater than
the distance it changes across the flow direction,
�?. This disparity in scales is related to the con-
centrated current lying in thin but broad ribbons
along the magnetic field lines as seen by Boozer and
Elder and predicted in [6]. The implication is that
|@~v/@t| ⇡ (VA/�`)ṽ ⇡ ṽ

2
/�tan, so �` ⇡ (VA/ṽ)�tan.

The rate at which the current increases in
the regions of concentrated current is @Kc/@t ⇡
(ṽ2/VA)/(a2fA), where Kc ⌘ µ0jc/B0 and fA =
�tan�?/a

2. Consequently, the time require for K

to reach Kc

tc ⇡ cj
�B

B0

✓
VA

ṽ

◆2
a

VA
(78)

⇡ 1.43
a

VA
. (79)

The time to reach jc can also be estimated by how
long it takes to put the required energy into Alfvén
waves, which is 2EK = 1.794⇥ 10�5 in the units of
the Huang-Bhattacharjee paper. The required time
to drive the Alfvén waves is

ta ⌘
2EK

⇣
103 a

VA

⌘

Wp
(80)

⇡ 1.0
a

VA
, (81)

which is consistent.
The energy in the large scale field �B is little

changed by whether that field is produced by highly
localized or by a smooth current density.

B. Importance of viscosity

Dissipation can balance the input power in two
ways: resistive dissipation ⌘j

2 and viscous dissipa-
tion ⇢⌫~⌦2, where ~⌦ ⌘ ~r ⇥ ~v, integrated over the
plasma volume. The strength of the inertial rela-
tive to the viscous force is measured by the ordi-
nary fluid Reynolds number Rf ⌘ va/⌫. The ratio
Rm/Rf = µ0⌫/⌘ ⌘ Pr is the plasma Prandtl num-
ber, which is generally much larger than unity in
plasmas [37].

The Huang and Bhattacharjee simulations [5]
studied the e↵ect of the Prandtl number on dis-
sipation with simulations at Rm ⇡ 104, which is
equivalent to S = 106, at fluid Reynolds numbers

of Rf ⇡ 104 and Rf ⇡ 10. They found the fraction
of the power dissipated by viscosity increased from
16% to 33% as the fluid Reynolds number was de-
creased. Since resistivity was the dominate source of
dissipation, the maximum current density remained
j ⇡ jshb. The scaling of the fraction of the dissipa-
tion due to resistivity for Rf below unity was not
explored. The equation for the plasma flow velocity
greatly simplifies when Rf is much less than unity,

⇢⌫ ~r⇥ ~⌦ = �~j ⇥ ~B with ⌦ ⌘ ~r⇥ ~v. Although this
limit could have been explored, it was not.

For the viscosity to compete, need ⌫ṽ/�
2
? ⇡

ṽ
2
/�tan, or ⌫ ⇡ ṽ(�2?/�tan) ⇡ ṽ(�3?/AtfA) ⇡

Rm(�2?/a
2)�?ṽ. Figure 6 of Huang and Bhattachar-

jee implies the perturbed plasma velocity during
fast reconnection reaches ṽ ⇡ 0.1VA and the width
of the high velocity region �? ⇡ 10�2

a. Conse-
quently, ⌫ ⇡ 104 ⇥ 10�4 ⇥ 10�2 ⇥ 10�1 = 10�3, and
Rf = avt/⌫ ⇡ 10 is required for viscosity to com-
pete with inertia. The actual fluid Reynolds number
when the Prandtl number Pr = 103 and the mag-
netic Reynold number is 104 is Rf = 10, which is
equivalent to Run H in the Huang and Bhattachar-
jee Table II. It would appear that their simulations
did not consider a case in which viscosity is domi-
nant over inertial e↵ects.

VII. DISCUSSION

The evolution of magnetic fields in low-resistivity
plasmas has three parts: the evolution of the topol-
ogy of the magnetic field lines, the evolution of the
magnetic energy, and the evolution of the magnetic
helicity. Two e↵ects can greatly modify the rates of
evolution, the concentration of the current density
into thin but broad ribbons along the magnetic field
lines and chaos in the magnetic field line trajecto-
ries. Chaos, or more precisely deterministic chaos,
means neighboring pairs of field lines separate ex-
ponentially with distance along the lines within a
bounded region of space. Only magnetic field lines
that have an exponential dependence on all three
spatial dimensions can be chaotic; Reference [38] dis-
cusses the history and importance of the concept of
chaos.

The three parts of the evolution respond in fun-
damentally di↵erent ways to the concentration of
the current density and to chaos when the resistiv-
ity is small. A magnetic Reynolds number Rm ⌘
µ0va/⌘

>⇠ 104 is typical of laboratory plasmas, and
Rm ⇠ 1014 is not unusual in solar and astrophysical
plasmas.

Magnetic field lines cannot change their topology
when b̂ · ~E = �@�/@` with b̂ = ~B/B and ` is the
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distance along a field line, for then @ ~B/@t = ~r⇥(~u⇥
~B) and ~u is the velocity of the field lines, [26]. Away
from nulls in the magnetic field, a potential �(~x, t)
can always be found that locally satisfies b̂ · ~E =
�@�/@`. But, such a �(~x, t) does not exist in a
torus when along a given line

lim
L!1

1

L

Z L

0
b̂ · ~Ed` 6= 0, (82)

nor when b̂ · ~E integrated from one perfectly-
conducting boundary to another is non-zero. When
a � does not exist that globally satisfies b̂ · ~E =
�@�/@`, the introduction of a term E ~r` with b̂ ·
~rE = 0, as in Equation 28 solves the non-locality
issue.

When magnetic field lines leave the volume in
which calculations are made, adequate boundary
conditions for determining whether magnetic field
lines break or not are extremely subtle [21]. Topol-
ogy changes in magnetic field lines are well defined
only when E is.

The importance of chaos to the preservation of
magnetic field line connections is undeniable when
Faraday’s law and mathematics are accepted. When
magnetic field lines are evolving in a way that in-
creases the rate at which they exponentiate apart, a
non-zero E will cause a breaking of connections on a
timescale that depends only logarithmically on the
magnitude of E .

The breaking of magnetic field line connections
removes a constraint on magnetic evolution, but its
connection with the transfer of energy from the mag-
netic field to the plasma is complicated. When the
magnetic field evolution is ideal, the power transfer
to the plasma is

R
~u? ·(~j⇥ ~B)d3x. The ~j⇥ ~B Lorentz

force integrated over a thin current layer need not
be large. A delta-function current density is equiva-
lent to a current potential , which produces only a
finite force on the current carrier [39]. A large power
transfer occurs only when the flow velocity ~u is also
concentrated in the thin layer.

When power is continuously put into the plasma,
there are two ways it can be dissipated: by resis-
tively

R
⌘j

2
d
3
x and by viscosity

R
⇢⌫(~r ⇥ ~v)2d3x.

An important but unsettled question is what frac-
tion of the power is dissipated by viscosity versus

resistivity in the limit as the magnetic Reynolds
number Rm ! 1. When the viscosity is extremely
large, it would seem di�cult to for the flow veloc-
ity to lie in thin layers, which seems necessary to
form the thin layers of intense j that are necessary
for a large resistive dissipation. Is this true only
when the fluid Reynolds number Rf = av/⌫ is less
than unity? Or, can it be true when the Prandtl
number Pr = Rm/Rf = µ0⌫/⌘ becomes su�ciently
large even with Rf >> 1? Practical simulations
can certainly determine the nature of reconnection
for Rf arbitrarily small, but practical limitations on
the highest Rm that can be simulated may prevent
studies of the case with a very large Prandtl number
but with Rf > 1.

Magnetic field line chaos and intense current
sheets have little e↵ect on the evolution of mag-
netic helicity. It is important to study what happens
when footpoint motion injects helicity into a solar
loop. Presumably, the loop becomes kink unstable
and must eventually erupt from the sun. This could
be studied in the model of Figure 1.a with the re-
gion directly driven by the footpoint motion of much
smaller radius that the radius of the cylinder as de-
scribed in [7].

Electron runaway o↵ers a compelling explanation
of the solar corona and serves as a check on the pro-
duction of intense currents by even smooth, large-
scale footpoint motion. The more complete mea-
surements and more powerful simulations should al-
low a far better understanding.
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